skip to main content


Search for: All records

Creators/Authors contains: "Hewitt, Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Body condition is a crucial and indicative measure of an animal’s fitness, reflecting overall foraging success, habitat quality, and balance between energy intake and energetic investment toward growth, maintenance, and reproduction. Recently, drone-based photogrammetry has provided new opportunities to obtain body condition estimates of baleen whales in one, two or three dimensions (1D, 2D, and 3D, respectively) – a single width, a projected dorsal surface area, or a body volume measure, respectively. However, no study to date has yet compared variation among these methods and described how measurement uncertainty scales across these dimensions. This associated uncertainty may affect inference derived from these measurements, which can lead to misinterpretation of data, and lack of comparison across body condition measurements restricts comparison of results between studies. Here we develop a Bayesian statistical model using known-sized calibration objects to predict the length and width measurements of unknown-sized objects (e.g., a whale). We use the fitted model to predict and compare uncertainty associated with 1D, 2D, and 3D photogrammetry-based body condition measurements of blue, humpback, and Antarctic minke whales – three species of baleen whales with a range of body sizes. The model outputs a posterior predictive distribution of body condition measurements and allows for the construction of highest posterior density intervals to define measurement uncertainty. We find that uncertainty does not scale linearly across multi-dimensional measurements, with 2D and 3D uncertainty increasing by a factor of 1.45 and 1.76 compared to 1D, respectively. Each standardized body condition measurement is highly correlated with one another, yet 2D body area index (BAI) accounts for potential variation along the body for each species and was the most precise body condition metric. We hope this study will serve as a guide to help researchers select the most appropriate body condition measurement for their purposes and allow them to incorporate photogrammetric uncertainty associated with these measurements which, in turn, will facilitate comparison of results across studies. 
    more » « less
  2. Abstract

    While most spatial data can be modeled with the assumption that distant points are uncorrelated, some problems require dependence at both far and short distances. We introduce a model to directly incorporate dependence in phenomena that influence a distant response. Spatial climate problems often have such modeling needs as data are influenced by local factors in addition to remote phenomena, known as teleconnections. Teleconnections arise from complex interactions between the atmosphere and ocean, of which the El Niño–Southern Oscillation teleconnection is a well‐known example. Our model extends the standard geostatistical modeling framework to account for effects of covariates observed on a spatially remote domain. We frame our model as an extension of spatially varying coefficient models. Connections to existing methods are highlighted, and further modeling needs are addressed by additionally drawing on spatial basis functions and predictive processes. Notably, our approach allows users to model teleconnected data without prespecifying teleconnection indices, which other methods often require. We adopt a hierarchical Bayesian framework to conduct inference and make predictions. The method is demonstrated by predicting precipitation in Colorado while accounting for local factors and teleconnection effects with Pacific Ocean sea surface temperatures. We show how the proposed model improves upon standard methods for estimating teleconnection effects and discuss its utility for climate applications.

     
    more » « less